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Motivation: The model DESCAM (DEtailed SCAvenging Model)
During the past decades, the Arctic has warmed twice as fast as Flossmann and Wobrock (2010); Leroy et al (2009)

the global average, which state-of-the-art coupled ocean-

atmosphere models fail to correctly simulate. The ANR-AC-AHC2 Old version: 3 + 2 density distribution functions:

project aims to improve our understanding by quantifying the

atmospheric moisture transport to the arctic and discriminating f4 : drop number - Warm microphysical processes : aerosol particle
between local sources and long distance moisture transport. Water f, :ice crystal number growth and activation, droplet de-activation, growth
stable isotopes will be used as indicators and new measurements fap : Wet aerosol particle number ©of drops by condensation and collision-coalescence
of precipitation and surface water vapour isotopic composition in Oapq - @erosol mass inside drops ;1CtOId microphy s:calrl ptr' ocesses :ﬂl:gmogeneous and
north Greenland and Svalbard, will be compared with model output. Oap; - @erosol mass inside ice elerogeneous nucleation, growth by vapor
crvstals deposition, riming and melting.
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Adaptation of DESCAM for the exchange of 120 isotopes during 10000 -, wet aerosol partcles
phase transitions with the liquid/solid cloud phase : o0 drops
p', : water vapour content in kg m™ containing 80 with p’, = R, p, T 001
m’ : droplice water mass containing %0 with m’' = R;;m and a,;, = Ry Rosurs % 00001 ice crystals
' 1E-006
Ry, R;, R;isotopic ratios in the vapour, liquid and solid phase and 1E-008
are, aie: liquid/solid equilibrium fractionation factor = fct (T) N
Liquid condensation/evaporation mass change (Pruppacher and Kilett, 1997) is ooot oo o Di;meter1(?,m) e
calculated using for the drops:
A BTI%, > 1E-012 3 Aerosol particles
dm Sow — E + a3 — 1'13(, I N inside drops
dt - e R,T 1E-014é

L, (1,
Dvesat,w + kT (RUT B 1)
+ 2 new distribution functions:
am' by, k- LA ( R, (D',, dm)) Jisod - heavy” water mass inside drops

dt e \Dy dt Jisoi - heavy” water mass inside ice crystals naide io8 arystae

ale
1E_0207 T \II\II\‘ T I\\\\\‘ T \\I\II\‘ T T \\\\H‘

accompagnied by uptake of « heavy water » :

dM/dInr (g cm-?)

Total condensation yields :

1 10 Diame‘ltg?(“m) 1000 10000
ALWC ap, a [ .
() =) = 5| mFaGmyam They are transported in the same way
as a scavenged particle mass and are exchanged during phase transition processes
and « heavy water » liquid : .
“ dm’ ap', with the gaseous phase.
fo a¢ famdm = ——5
In the figures the isotope ratio is displayed in °/oo:
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where the standard is a known isotopic composition, such as the Vienna Standard Mean .
Ocean Water (VSMOW). o condensation rates.
The uptake of "°0 into the ice phase is treated accordingly, changing the coefficient aje to E - I
aje and adapting the solid condensation equation. For the aerosol particles, at all times an £ 120 Fig. 4: Time/height evolution of 0780 in the ice
equilibrium condition is assumed. S 4 "
T % phase.
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e —= : Results:
| | | | > o z—A o , The selective uptake of water stable isotopes were added
Fig. 2: Time/height evolution = 100 w0 w0 w0 to the liquid and solid phase.
of evolution of 6780 in the -l Th h isot d . hich i
gaseous phase fora 1D cloud. E 6 - 200 | | | e « ea_vy » ISO or_)es con ens.e more easlly, wnicn is
= / — Fig. 5: Time evolution of reflected in the maxima of 8’0 in the zones of max.
Note the increase of isotopic 2 4 W-@L {\' 00 th? ;a:lnfalllrfl‘::e, g:?;!’n;::lat'v_e condensation (Cf Flg 3 and 4) Gaseous 6780 is lower
. . . G ‘Tﬂﬂ —_—
depletion with decre"?s'"ﬂ - - — 400 gt gar';un I ' e rain at lower temperatures.
temperature (increasing height), > " 1500 The rain reaching the ground (Fig.1 and 5) has a mean
compare e.g. Bolot et al (2013). 18 )
500 67°0 of 120, in the range of observed values.
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Conclusions:

As a first step, the water stable isotopes were added to the 1.5D bin-resolved microphysics Detailed Scavenging Model (DESCAM) and their evolution in a single
precipitating cloud was studied. The resulting depletion/enrichment rates depend strongly on initial conditions. Further sensitivity studies will be performed. Finally,
the microphysical module can be coupled in a parcel version to meso- and global scale models (MAR and LMDz) and can be compared to observations.
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