A 3D polarized Monte Carlo LIDAR system simulator for studying cirrus inhomogeneities effects on Caliop/Calipso measurements

F. Szczap(1), C. Cornet(2), A. Alqassem(1), Y. Gour(1), L. Labonnote(2) and O. Jourdan(1)

(1) Laboratoire d’Optique Atmosphérique (LOA), Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

(2) Laboratoire de Météorologie Physique (LaMIP), Université Blaise Pascal, Aubière, France

Scientific context:
LIDAR is a powerful tool for deriving the cirrus properties, but the main difficulty to overcome is the significant extinction of the Lidar beam in its path through the cloud, and one must take into account multiple scattering (Hogan, 2008, Hu et al., 2001). In reality, the “apparent” backscatterer estimated by the LIDAR system from the “basis Lidar equation” is not equal to the “true” backscatterer of the cirrus as multiple scattering is omitted. The cirrus properties are also assumed to be horizontally homogeneous at each level into and around the LIDAR system “footprint”.

Our objective is to quantify the effects of cirrus inhomogeneities represented by 3D spatial fluctuations of extinction on the apparent backscatterer and the apparent depolarization ratio measured by Caliop/Calipso.

Methodology:
We developed a 3D polarized LIDAR simulator based on 3DMCp(3) (Cornet et al., 2010), a forward Monte Carlo radiative transfer model using the local estimate method which allows the computation of the Stokes vectors I, Q, U, V.

Our LIDAR simulator calculates the apparent total backscatter $\beta_{\text{app}}(z)$ and the apparent depolarization ratio $\delta_{\text{app}}(z)$, where z is the height above ground, as “seen” by Caliop/Calipso if, at each vertical discretization level, the cloud is assumed homogeneous plane-parallel with the extinction equal the mean horizontal extinction of inhomogeneous cloud.

We estimated differences between $\beta_{\text{app}}(z)$ and $\beta_{\text{true}}(z)$ and between $\delta_{\text{app}}(z)$ and $\delta_{\text{true}}(z)$, where β_{true} and δ_{true} are the apparent backscatter and depolarization ratio as “seen” by Caliop/Calipso if, at each vertical discretization level, the cloud is assumed homogeneous plane-parallel with the extinction equal the mean horizontal extinction of inhomogeneous cloud.

Numerical parameters:
- Horizontal extinction domain = 1 km
- Vertical resolution = 20 km
- Vertical resolution = 20 m
- Pixel number: $N_{\text{x}} = N_{\text{y}} = 50$
- $N_{\text{p}} = 400$
- Each simulation: 70 independent batches of 10 millions of photons: at each batch, inhomogeneous cloud is reinitialized.

Cloud parameters:
- Mean optical depth is constrained to be equal to 3 every 100 m2 (size of footprint).

Results:
- Significant differences exist between our LIDAR simulator and Hogan’s lidar simulator, especially 1 km beneath the cloud base.
- Our lidar simulation shows lots of spikes (due to the locate estimate method).
- Effects of 3D spatial fluctuations of cloud extinction on the apparent backscatterer seem to be negligible.
- Effects of 3D spatial fluctuations of cloud extinction on the apparent depolarization ratio seem not to be negligible: $\delta_{\text{app}}(z) \neq \delta_{\text{true}}(z)$
- This bias between $\delta_{\text{app}}(z)$ and $\delta_{\text{true}}(z)$ decreases with distance from the top of the cloud.
- This bias is larger for spherical ice crystals than for rough plate ice crystals.

Perspectives:
- In order to smooth out the spikes, truncation or delta scaling methods shouldn’t be used, because they introduce bias with polarized phase function (not shown in this poster). Variance reduction methods presented in Buras and Mayer (2010) should be implemented in our LIDAR simulator.
- In order to generalize these early results, sensitivity tests must be carried out with more realistic fluctuations of cirrus extinction and with other ice crystals shapes.

Acknowledgements: This work is supported by the Programme National de Télédétection Spatiale (PNTS) of the Institut National des Sciences de l’Univers (INSU).

Bibliography:

