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DESCAM (Detailed scavenging model, Flossmann and 

Wobrock, 2010) coupled with the 3D meso-scale 

dynamical model (Clark et al., 1996)

Warm microphysical processes : 
aerosol particle growth and activation, droplet de-

activation, growth of drops by condensation and 

collision-coalescence, break up.

Cold microphysical processes :
homogeneous and heterogeneous nucleation, growth 

by vapor deposition, riming.

New microphysical processes :
aggregation, continuous melting and collision 

between droplets and melting hydrometeors.

fd : drop number

fi : ice crystal number

fAP : wet aerosol particle number

gAP,d : aerosol mass inside drops 

gAP,i : aerosol mass inside ice crystals

gwir : water ice mass ratio of ice crystals

Objective: Improving the representation of ice particles for the interpretation of radar observations and to better describe the influence

of the ice phase on rain formation.

Development of a melting parameterization based on the theory of Mason 

(1956) and the lab experiments of Rasmussen and Pruppacher (1982)

Assumptions:

1- the overall 

radius b of the 

melting particle 

remains constant

2- the melting ice particle is spherical and 

remains so at all times

3- the ice core remains spherical and 

concentric with the outer boundary of the 

melting particle at all times

4- internal circulation in the thin melt water 

layer is neglected

Critical condition for the onset of 

melting 
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Parameterization: 

with:
•dmi/dt: melting rate (g s-1)

•eice : ice mass in crystal (g)

•RH: relative humidity of the air

•a(T),b(T): polynomial functions 

depending on the temperature

1- The melting rate is a function of T and RH (Rasmussen and 

Heymsfield,1987)

2- Various tests regarding the influence of  T and RH have 

been performed and showed that the parameterized time rates 

of melting deviate less than 10% from those in Rasmussen 

and Pruppacher (1982).

Parameterization: 

• Based on laboratory experiments of Rasmus-

sen and Pruppacher (1982):

432 23.686.1923.2707.2664.285 RHRHRHRHTcritical 

The parameterized critical conditions are the same 

than the observations.

Set-up of the idealized case study

Domain :

• 150 × 73 × 20 km3

• dx = dy = 750 m

• variable grid in z 

• winter sounding of Zängl 

et al. (2010)

• idealized topography : bell-shape 

mountain and continuous slope.

Simulation results Local variation
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Conclusions

Objective :

• simulating the ice phase in a stratiform 

situation to well observe the melting layer

• ice phase is present in areas 

with positive temperatures

• the melting layer has a depth of  

about 200 m

• the 0°C altitude level falls 

where the melting process is 

more effective

• in both cases, rain is caused 

mainly by melting, while the 

pattern of the rainwater content 

is quite different; melting occurs 

over a layer of finite depth below 

the freezing level in the detailed 

scheme as it does in the real 

atmosphere. 

• inclusion of the detailed melting scheme 

causes a stronger latent cooling; the local 

variation of the temperature causes the 

descent of the 0°C level

• warming by latent heat release caused 

by riming processes has a minor effect

→  latent warming and cooling slightly 

modify the vertical movements.

• a detailed melting scheme was introduced in 

the DESCAM 3D model

• the melting process influences the spatial 

distribution of the rainwater content 

• the latent heat consumed during melting 

cools the local environment and slightly 

modifies the vertical motion

• the intensity of the rainwater will be 

examined in further studies because it seems 

lower in the detailed melting scheme than in 

the instantaneous one

• the study of the melting layer will enable to 

examine the evolution of radar bright band 

observations

melting


